
Some background for next week: 
!

Learning network parameters
• Modeling neural interactions 

• Markov Random Fields -> neural interactions 

• Applications to visual surface perception 

• surface interpolation, texture modeling

Models of neural interaction

Models of neural 
interactions

• Theory  

• The role of lateral, local interactions in perception 

• filling-in, texture analysis, normalization..

Applications in vision 

• S represents a surface property 

• e.g. “intrinsic images”: depth, shape, lightness, … 

• S represents image intensity: texture models 

• S represents neural activity V that in turn represents an inferred 
surface property
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Fig. 11. A typical sample of ps(I) (384 ¥ 384 pixels).

4.2 Anisotropic Diffusion and Gibbs
Reaction-Diffusion

This section compares Grades with previous diffusion
equations in vision.

In [25], [23], anisotropic diffusion equations for generat-
ing image scale spaces are introduced in the following
form,

It = div(c(x, y, t)—I),      I(x, y, 0) = Iin,                  (15)

where div is the divergence operator, i.e.,

div
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V P Qx yd i = — + —

for 
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V P Q= ,c h . Perona and Malik defined the heat conduc-
tivity c(x, y, t) as functions of local gradients, for example:
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Equation (16) minimizes the energy function in a continu-
ous form,
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where l(x) = alog(1 + (x/b)2) and ¢ =
+
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 are plot-

ted in Fig. 12. Similar forms of the energy functions are
widely used as prior distributions [9], [4], [20], [11], and
they can also be equivalently interpreted in the sense of
robust statistics [13], [3].

In the following, we address three important properties
of the Gibbs reaction-diffusion equations.

First, we note that (14) is an extension to (15) on a dis-
crete lattice by defining a vector field,
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and a divergence operator,

div = * + * + + *- - -F F F K1 2a f a f a f" .

Thus (14) can be written as,

It V= div
!d i.                                     (17)

Compared to (15), which transfers the “heat” among adja-
cent pixels, (17) transfers the “heat” in many directions in a
graph, and the conductivities are defined as functions of the
local patterns not just the local gradients.

Second, in Fig. 13, f(x) has round tip for g  ≥ 1, and a
cusp occurs at x = 0 for 0 < g < 1 which leaves ¢f xb g  unde-

fined, i.e., ¢f xb g  can be any value in (-•, •) as shown by the
dotted curves in Fig. 13d. An interesting fact is that the po-
tential function learned from real world images does have a
cusp as shown in Fig. 9a, where the best fit is g = 0.7. This
cusp forms because a large part of objects in real world im-
ages have flat intensity appearances, and f(x) with g < 1 will
produce piecewise constant regions with much stronger
forces than g  ≥ 1.

By continuity, ¢f xb g  can be assigned any value in the
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where s is the summation of the other terms in the differ-
ential equation whose values are well defined. Intuitively

when g < 1 and x = (F(a) * I)(x, y) = 0, f(a)¢(0) forms an at-

tractive basin in its neighborhood !(a)(x, y) specified by

the filter window of F(a). For a pixel (u, v) Œ !(a)(x, y), the

depth of the attractive basin is w aF u x v y- - -a fc h, . If a

pixel is involved in multiple zero filter responses, it will
accumulate the depth of the attractive basin generated by
each filter. Thus unless the absolute value of the driving
force from other well-defined terms is larger than the total
depth of the attractive basin at (u, v), I(u, v) will stay un-
changed. In the image restoration experiments in later
sections, g < 1 shows better performance in forming
piecewise constant regions.

Third, the learned potential functions confirmed and
improved the existing prior models and diffusion equa-
tions, but, more interestingly, reaction terms are first dis-
covered, and they can produce patterns and enhance pre-
ferred features. We will demonstrate this property in the
experiments below.

Freeman & Simoncelli 
(2011)Zhu & Mumford, 1997

What good are probabilistic models of “unit” or 
neural interactions for studies of biological 

vision?

• Stimulus generation based on physical interactions 

• Explaining perceptual grouping in terms of priors on natural surface 
properties 

• Models of neural interactions 

• theoretical framework 

• experimental predictions ?

Learning network 
parameters

• Unsupervised 

• data is a collection of inputs, e.g. images 

• Supervised 

• data is a collection of input/output pairs 

  e.g. an image and its depth map 

• Learning depends on an underlying an inference algorithm



Inference algorithm review

• Boltzmann machine 

• Restricted Boltzmann 
machine 

• no interactions between 
hidden units 

• independent factors

Inference review
Inference 

• can be done by drawing samples, e.g. Gibbs sampling 

• estimating the mode or mean 

• annealing (slow) 

• mean field theory algorithms

Unsupervised learning
• Values of hidden units determined by the 

visual inputs 

• Hidden units represent 
internal“explanations” of the inputs 

• Original Boltzmann algorithm: 

• The weights get adjusted through 
experience to move  P(x) close to P’(x) 
where 

• P(V) - probability of visible units 
taking on certain values determined 
by visual input from the environment 

• P'(V) - probability that the visible 
units take on certain values while 
the network is running without visual 
input
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on the form of the weights {T
ij

}. For certain BMs Gibbs sampling will take an extremely long time to
converge while mean field theory will get stuck in a local minimum.

Inference for the RBM is much simpler. Because the distribution P (~x|~I) factorizes as
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2) Learning BMs and RBMs: In order to do learning we must make the learning variables explicit in

the BM distribution by re-expressing it as P

BM

(~x,
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I|T, ✓). For simplicity of notation we set � = (T, ✓)

and express E(x, I) = � · �(x, I) (we also drop the vector notation for x and I).
Suppose we have training data {Iµ : µ = 1, ..., N}. Maximum likelihood estimating � from the marginal

distribution P (I|�) =
P
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P (I, x|�), which requires summing out the hidden variables x (we need hidden
variables x

µ for each training example I
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This type of estimation problem is usually addressed by the estimation-minimization (EM) algorithm.
This introduces additional variables {qµ(xµ

) : µ = 1, ..., N}, which are distributions over the hidden
variables {xµ

: µ = 1, ..., N}. EM proceeds by estimating the q and the � in alternation by the following
two steps:
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This algorithm is guaranteed to converge to a local minimum of the maximum likelihood criterion.
It is not easy to perform these steps for the Boltsmann Machine. But we can estimate them by using

stochastic sampling. Firstly, we can perform the first step by using Gibbs sampling to get samples from
P (x

µ|Iµ,�t+1
) and hence estimate q
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µ

.
To calculate the second step is more complicated. The equation can be formulated as finding the mini-
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This can be performed by steepest descent (or by generalized iterative scaling) using update equations
such as:

�

t+1
= �

t

+�{(1/N)

X

µ

X

x

µ

q

µ

(x

µ

)�(x

µ

, I

µ

)�
X

x,I

�(x, I)

e

�·�(x,I)
P

x,I

e

�·�(x,I)}. (5)

The terms on the right-hand side can be estimated by stochastic sampling.
Hence performing EM for the BM is complex (and there are further approximations not mentioned

here). Estimating the parameters � is much easier for the RBM. The sampling can be done directly (ie.
without needing MCMC like Gibbs).

Note: we can also learn by doing Gibbs sampling for the combination (h,�), This requires specifying
a prior distribution P (�) (which could be the uniform distribution). Then sampling alternatively from
P (�|I, x) and P (x|�, I) (this is an extension of Gibbs sampling).

Note: Deep belief networks can be constructed by stacking RBMs on top of each other so that the
output of one RBM is the input to the next RMB. The RBMs are learnt one after the other in a greedy
manner (then there is a final stage where the parameters/weights of all layers are adjusted). This will be
described in later lectures.

Notation: x includes visible 
V, and invisible units.  

!
λ includes the weights from 
visible units and the ones 

between invisible units

Make weights explicit

Supervised learning
• Regression 

• Binary regression & the artificial 
neuron 

• Linear regression 

• Non-linear regression 

• polynomials, RBFs 

• perceptron and “back-prop”

LEARNING SHAPE FROM SHADING 

FIG. 1. Shaded image of a fractal surface. The surface has a fractal dimension of 2.15 and is low-pass 
filtered with an upper cutoff frequency of 24 cycles per surface (see Section 6 for description of fractal 
surfaces). 

be statistically independent of shape and illuminant away from contours and thus 
may be derived independently. 

In a coordinate system, (x, y, z), where z is the surface height and is taken 
positive in the direction of the viewer, we can represent N as the vector, (n,, n ,,, PZ=)~. 
whose components are given by 
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KNILL AND KERSTEN 

b 

FIG. 3. 3D plots of two fractal surfaces with (a) fractal dimension of 2.15 and (b) fractal dimension 
of 2.5. 

We assume that the surface process is spatially isotropic, so that its two-dimensional 
power spectrum is independent of orientation and is given as a function of radial 
spatial frequency, f,, by 

W) = $7 L’O- (26) 

The exponent is related to the fractal dimension by 
/3’ = 8 - 20. (27) 

The constant k is proportional to the variance of S. We further assume that the 
process S is stationary3; that is, its statistics are invariant to changes in spatial 

31dealized fractional Brownian processes are not stationary, as illustrated by the fact that the integral 
l/fp is unbounded for all j3. If we allow the power spectrum to have a low frequency cutoff, however, 
the integral becomes bounded for all p > 2; that is, for D < 3. Such a process is stationary, and may be 
described as exhibiting fractal behavior at scales below that defined by the cutoff frequency. 

Knill, D. C., & Kersten, D. (1990). 
Learning a near-optimal estimator 
for surface shape from shading. 
Computer Vision, Graphics, and 

Image Processing, 50(1), 75–100.



Next week
• Deep-belief networks 

• Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast 
learning algorithm for deep belief nets. Neural 
Computation, 18(7), 1527–1554.  

• Experimental support for neural networks that learn the 
statistics of their input 

• Berkes, P., Orban, G., Lengyel, M., & Fiser, J. (2011). 
Spontaneous cortical activity reveals hallmarks of an 
optimal internal model of the environment. Science, 
331(6013), 83–87.


