Some background for next week:
Learning network parameters

Models of neural interaction

- Modeling neural interactions
- Markov Random Fields -> neural interactions
- Applications to visual surface perception
- surface interpolation, texture modeling

Applications in vision

- S represents a surface property
- e.g. "intrinsic images": depth, shape, lightness, ...
- S represents image intensity: texture models
- S represents neural activity V that in turn represents an inferred surface property

$$
p\left(v_{i} \mid V_{j}, \quad j \in N_{i}\right)=k e^{-\sum_{j \in N(i)} f\left(v_{i}-v_{j}\right)}
$$

What good are probabilistic models of "unit" or neural interactions for studies of biological vision?

- Stimulus generation based on physical interactions
- Explaining perceptual grouping in terms of priors on natural surface properties
- Models of neural interactions
- theoretical framework
- experimental predictions ?

Applications in texture learning and synthesis

Zhu \& Mumford, 1997

reeman \& Simoncelli
(2011)

Learning network parameters

- Unsupervised
- data is a collection of inputs, e.g. images
- Supervised
- data is a collection of input/output pairs
e.g. an image and its depth map
- Learning depends on an underlying an inference algorithm

Inference algorithm review

- Boltzmann machine

$$
P_{B M}(\vec{x}, \vec{I})=\frac{1}{Z} \exp \left\{\sum_{i j} T_{i j} x_{i} I_{j}+(1 / 2) \sum_{i j} \theta_{i j} x_{i} x_{j}\right\}
$$

- Restricted Boltzmann machine
- no interactions between hidden units

$$
P_{R B M}(\vec{x} \mid \vec{I})=\frac{1}{Z_{T}} \exp \left\{\sum_{i j} T_{i j} x_{i} I_{j}\right\}=\prod_{i=1}^{n} P\left(x_{i} \mid \vec{I}\right)
$$

- independent factors

Inference review

Inference

- can be done by drawing samples, e.g. Gibbs sampling
- estimating the mode or mean
- annealing (slow)
- mean field theory algorithms

Unsupervised learning

- Values of hidden units determined by the visual inputs
- Hidden units represent internal"explanations" of the inputs
- Original Boltzmann algorithm:
- The weights get adjusted through experience to move $P(x)$ close to $P^{\prime}(x)$ where
- $P(V)$ - probability of visible units taking on certain values determined by visual input from the environmen
- $P^{\prime}(V)$ - probability that the visible units take on certain values while the network is running without visual input

Make weights explicit

$$
\begin{gathered}
\left\{I^{\mu}: \mu=1, \ldots, N\right\} \\
P(I \mid \lambda)=\sum_{x} P(I, x \mid \bar{\lambda}) \\
\lambda^{*}=\underset{\lambda}{\arg \max _{\lambda} \prod_{\mu=1}^{N} \sum_{x^{\mu}} P\left(x^{\mu}, I^{\mu} \mid \lambda\right)}
\end{gathered}
$$

Notation: x includes visible V, and invisible units.
λ includes the weights from visible units and the ones between invisible units

Supervised learning

- Regression
- Binary regression \& the artificial neuron
- Linear regression
- Non-linear regression
- polynomials, RBFs
- perceptron and "back-prop"

Next week

- Deep-belief networks
- Hinton, G. E., Osindero, S., \& Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554.
- Experimental support for neural networks that learn the statistics of their input
- Berkes, P., Orban, G., Lengyel, M., \& Fiser, J. (2011). Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science, 331(6013), 83-87.

